Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nd₃Mo₄SiO₁₄

P. Gougeon* and P. Gall

Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Received 9 May 2007; accepted 21 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Si–O) = 0.006 Å; disorder in main residue; R factor = 0.037; wR factor = 0.085; data-to-parameter ratio = 25.9.

The title compound, trineodymium silicotetramolybdate, is isotypic with $La_3Mo_4SiO_{14}$. The crystal structure contains ribbons made of chains of triangular Mo_3O_{13} units and chains of edge-sharing MoO_6 octahedra. The ribbons are separated from each other by the Nd^{3+} and Si^{4+} cations. The three distinct Nd^{3+} cations are surrounded by eight to ten O atoms, and the Si^{4+} is tetrahedrally coordinated. Except for two Mo and four O sites, all other sites (three Nd, one Mo, one Si and six O) are located on mirror planes.

Related literature

For the isotypic La₃Mo₄SiO₁₄, see Betteridge *et al.* (1984). The structure contains edge-sharing MoO₆ octahedra similar to those found in MoO₂ (Brandt & Skapski, 1967). The oxidation states of Mo atoms were estimated using the data given by Brown & Wu (1976). Besides the title compound, crystals of NdMo₅O₈ (Gougeon *et al.*, 2003) were also obtained.

Experimental

Crystal data

 $\begin{aligned} & \text{Nd}_3\text{Mo}_4\text{SiO}_{14} \\ & M_r = 1068.56 \\ & \text{Orthorhombic, } Pnma \\ & a = 17.5348 \ (15) \text{ Å} \\ & b = 5.6159 \ (3) \text{ Å} \\ & c = 10.8542 \ (11) \text{ Å} \end{aligned}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{min} = 0.272, T_{max} = 0.710$ $V = 1068.85 (15) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 19.04 \text{ mm}^{-1}$ T = 293 (2) K $0.16 \times 0.02 \times 0.02 \text{ mm}$

30670 measured reflections 3131 independent reflections 2619 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.085$ S = 1.383131 reflections

121 parameters $\Delta \rho_{\text{max}} = 2.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -3.72 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Nd1-O4 ⁱ	2.321 (4)	Mo1-Mo2	2.5351 (8)
Nd1-O3 ⁱⁱ	2.444 (6)	Mo2-O3	1.988 (4)
Nd1-O9 ⁱⁱⁱ	2.520 (5)	Mo2-O5	2.023 (4)
Nd1-O5	2.524 (4)	Mo2-O7	2.029 (5)
Nd1-O7	2.651 (7)	Mo2-O2	2.072 (4)
Nd2-O9 ^{iv}	2.422 (5)	Mo2-O8	2.084 (5)
Nd2-O1 ^{iv}	2.461 (4)	Mo2-O1	2.127 (4)
Nd2-O4 ^v	2.465 (4)	Mo2-Mo2 ^{xi}	2.5498 (9)
Nd2-O6 ^v	2.580 (7)	Mo2-Mo2 ^{xii}	3.0661 (9)
Nd2-O10 ^{vi}	2.896 (8)	Mo3-O2 ⁱⁱⁱ	1.925 (6)
Nd3-O10	2.368 (7)	Mo3–O9 ^{xi}	1.941 (5)
Nd3-O5 ^{vii}	2.476 (4)	Mo3–O9 ^{iv}	1.966 (5)
Nd3-O4 ^{viii}	2.503 (4)	Mo3-O7	2.047 (6)
Nd3–O8 ^{ix}	2.544 (6)	Mo3-O9	2.160 (5)
Nd3-O1 ^x	2.760 (5)	Mo3–O9 ⁱⁱⁱ	2.187 (5)
Nd3–O6 ^{viii}	2.8617 (13)	Mo3-Mo3 ^{xiii}	2.503 (4)
Mo1-O4	1.944 (5)	Mo3-Mo3 ⁱⁱⁱ	3.145 (4)
Mo1-O5	2.030 (4)	Si-O10	1.620 (7)
Mo1-O8	2.055 (6)	Si-O6 ^{xiv}	1.626 (7)
Mo1-O6	2.122 (6)	Si-O1	1.649 (4)

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *COLLECT*; data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2113).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
- Betteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. & McCarroll, W. H. (1984). *Inorg. Chem.* 23, 737–740.
- Brandt, B. G. & Skapski, A. C. (1967). Acta Chem. Scand. 21, 661-672.
- Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Gougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472–478.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, i143 [doi:10.1107/S1600536807024798]

Nd₃Mo₄SiO₁₄

P. Gougeon and P. Gall

Comment

The title compound is isotypic with La₃Mo₄SiO₁₄ (Betteridge *et al.*, 1984). The crystal structure contains chains of triangular Mo_3O_{13} units and chains of edge-sharing MoO₆ octahedra similar to those found in MoO₂ (Brandt & Skapski, 1967). Both chains run parallel to the *b* axis (Fig. 1). Each single Mo chain is linked through O2 and O7 atoms to two Mo₃ chains to form ribbons (Fig. 2). The Mo—Mo distances within the Mo₃ triangles are 2.5351 (8) and 2.5498 (9) Å and the shortest distance between adjacent Mo₃ clusters is 3.0661 (9) Å. In the single Mo chains, the Mo—Mo distances are alternately 2.503 (4) and 3.145 (4) Å. The Mo—O distances of Mo1 and Mo2 forming the Mo₃ cluster unit range from 1.944 (5) to 2.127 (4) Å, while those of the Mo3 atom forming the Mo₂ dimer vary between 1.925 (6) and 2.187 (5) Å. From the lengths of the Mo—O bonds, we can estimate the oxidation states of each independent Mo atom by using the empirical bond length-bond strength relationship developed by Brown and Wu (1976). The calculations result in valence sums of +3.99 (6), +3.59 (6) and +3.92 (6) for Mo1, Mo2 and Mo3, respectively. Consequently, in Nd₃Mo₄SiO₁₄ the number of electrons per Mo₃ cluster is evaluated to 7, and to 2 per Mo atom in the single Mo chains. The Si site is tetrahedrally coordinated by O atoms with Si—O distances ranging from 1.620 (7) to 1.649 (9) Å. The bond length-bond strength calculation shows an oxidation state of +3.86 (5), in good agreement with the expected value of +4. The Nd atoms are surrounded by 8 to 10 O atoms forming considerably distorted polyhedra with Nd—O distances ranging from 2.321 (4) to 2.896 (8) Å (Table 1).

Experimental

In an attempt to prepare Nd₁₆Mo₂₀SiO₅₆, single crystals of Nd₃Mo₄SiO₁₄ were obtained by the reaction of Nd₂O₃, MoO₃, SiO₂ and Mo in the molar ratio 8:10:1:10. The initial mixture (*ca* 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 1873 K, the temperature which was held for 48 h, then cooled at 100 K/h down to 1373 K and finally cooled to room temperature by turning off the furnace. X-ray powder diffraction measurements using Cu $K\alpha_1$ radiation and a INEL CPS-120 curved position sensitive detector showed that the dominant products were NdMo₅O₈ (Gougeon *et al.*, 2003) and Nd₃Mo₄SiO₁₄.

Refinement

In the final refinement cycles the site occupancy factor for the Mo3 atom was constrained to 0.5. Because of the disorder of the Mo3 atom, we made reciprocal space reconstructions of different planes as well as long-exposure rotations along the three axes on the Kappa CCD diffractometer. In both cases, we did not observed any superlattice reflections or diffuse lines. The highest peak and the deepest hole in the final Fourier map are located 1.75Å from O5 and 1.43Å from Mo2, respectively.

Figures

Fig. 1. : Fragment of the chains of triangular Mo_3O_{13} units and edge sharing MoO_6 octahedra in $Nd_3Mo_4SiO_{14}$. Displacement ellipsoids are drawn at the 97% probability level.

Fig. 2. : View of Nd₃Mo₄SiO₁₄ along [010]. Displacement ellipsoids are drawn at the 97% probability level. Symmetry codes: (i) x, y = 1, z; (ii) x + 1/2, -y + 1/2, -z + 1/2.

trineodymium silicotetramolybdate

Crystal data	
Nd ₃ Mo ₄ SiO ₁₄	$F_{000} = 1896$
$M_r = 1068.56$	$D_{\rm x} = 6.640 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, Pnma	Mo K α radiation $\lambda = 0.71069$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 4003 reflections
<i>a</i> = 17.5348 (15) Å	$\theta = 3.8 - 38.0^{\circ}$
b = 5.6159 (3) Å	$\mu = 19.04 \text{ mm}^{-1}$
c = 10.8542 (11) Å	T = 293 (2) K
$V = 1068.85 (15) \text{ Å}^3$	Needle, black
Z = 4	$0.16 \times 0.02 \times 0.02 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	3131 independent reflections
Dediction courses fine feeting cooled take	2610 reflections with $L > 2-(D)$
Radiation source. The focus sealed tube	2019 Tellections with $I \ge 20(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 293(2) K	$\theta_{\text{max}} = 38.0^{\circ}$
φ scans ($\kappa = 0$) + additional ω scans	$\theta_{\min} = 3.8^{\circ}$
Absorption correction: analytical (de Meulenaer & Tompa, 1965)	$h = -30 \rightarrow 29$
$T_{\min} = 0.272, \ T_{\max} = 0.710$	$k = -8 \rightarrow 9$
30670 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + 19.2566P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.085$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = 1.38	$\Delta \rho_{max} = 2.32 \text{ e} \text{ Å}^{-3}$
3131 reflections	$\Delta \rho_{min} = -3.72 \text{ e } \text{\AA}^{-3}$
121 parameters	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinat	s and isotropic of	r equivalent isotro	opic displacement	t parameters (A	A^2
	1	1	1 1	1	

	x	у	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Nd1	0.16358 (3)	0.7500	0.631	58 (4)	0.00610 (8)	
Nd2	0.03477 (3)	1.2500	0.7994	44 (4)	0.00879 (8)	
Nd3	-0.15474 (3)	0.2500	0.0058	83 (4)	0.00702 (8)	
Mo1	0.28501 (4)	0.7500	0.3614	47 (6)	0.00450 (11)	
Mo2	0.16265 (3)	0.52298 (8) 0.3204	43 (4)	0.00428 (8)	
Mo3	-0.00732 (5)	0.7788 (4)	0.5069	98 (9)	0.0047 (4)	0.50
Si	0.06365 (13)	0.2500	0.1039	9 (2)	0.0052 (4)	
01	0.0800 (3)	0.5018 (8)	0.177	5 (4)	0.0077 (7)	
02	0.1004 (4)	0.2500	0.4002	2 (6)	0.0076 (10)	
03	0.2135 (3)	0.2500	0.237	7 (5)	0.0051 (9)	
04	0.3506 (3)	0.4958 (8)	0.3020	0 (4)	0.0084 (7)	
05	0.2315 (2)	0.5069 (7)	0.4697	7 (4)	0.0060 (7)	
06	0.3766 (4)	0.7500	0.4892	2 (6)	0.0121 (12)	
07	0.0941 (4)	0.7500	0.4140	6 (6)	0.0089 (10)	
08	0.2217 (3)	0.7500	0.202	1 (6)	0.0074 (10)	
09	-0.0452 (3)	0.5027 (8)	0.3820	5 (4)	0.0107 (8)	
O10	-0.0224 (4)	0.2500	0.0497	7 (7)	0.0141 (13)	
Atomic disp	placement parameters	(\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.00569 (17)	0.00825 (17)	0.00435 (17)	0.000	-0.00015 (12)	0.000
Nd2	0.00467 (17)	0.01261 (18)	0.0091 (2)	0.000	-0.00054 (13)	0.000
Nd3	0.00575 (17)	0.00927 (17)	0.00606 (17)	0.000	-0.00034 (13)	0.000
Mo1	0.0037 (2)	0.0056 (2)	0.0041 (3)	0.000	-0.00002 (19)	0.000

Mo2	0.00411 (18)	0.00450 (16)	0.00421 (18)	0.00031 (13)	0.00010 (13)	-0.00078 (13)
Mo3	0.0042 (3)	0.0057 (12)	0.0040 (3)	0.0002 (3)	0.0001 (2)	-0.0002 (3)
Si	0.0045 (9)	0.0073 (9)	0.0037 (9)	0.000	-0.0002 (7)	0.000
01	0.0079 (18)	0.0077 (16)	0.0075 (18)	0.0002 (13)	-0.0015 (13)	-0.0036 (14)
O2	0.006 (2)	0.009 (2)	0.008 (3)	0.000	0.0023 (19)	0.000
O3	0.006 (2)	0.003 (2)	0.006 (2)	0.000	0.0009 (18)	0.000
O4	0.0075 (18)	0.0094 (16)	0.0083 (18)	-0.0028 (14)	0.0002 (13)	-0.0014 (14)
O5	0.0067 (17)	0.0062 (15)	0.0050 (17)	0.0005 (13)	-0.0001 (13)	0.0018 (12)
O6	0.006 (3)	0.021 (3)	0.009 (3)	0.000	-0.004 (2)	0.000
O7	0.005 (2)	0.011 (3)	0.010 (3)	0.000	0.003 (2)	0.000
O8	0.004 (2)	0.012 (2)	0.007 (3)	0.000	0.0003 (18)	0.000
O9	0.010 (2)	0.0061 (17)	0.016 (2)	0.0008 (14)	0.0043 (15)	-0.0003 (15)
O10	0.006 (3)	0.019 (3)	0.018 (3)	0.000	-0.002 (2)	0.000

Geometric parameters (Å, °)

2.321 (4)	Mo2—O2	2.072 (4)
2.321 (4)	Mo2—O8	2.084 (5)
2.444 (6)	Mo2—O1	2.127 (4)
2.520 (5)	Mo2—Mo2 ^v	2.5498 (9)
2.520 (5)	Mo2—Mo2 ^{xvii}	3.0661 (9)
2.524 (4)	Mo3—Mo3 ^v	0.323 (4)
2.524 (4)	Mo3—O2 ⁱⁱⁱ	1.925 (6)
2.651 (7)	Mo3—O9 ^v	1.941 (5)
3.2916 (11)	Mo3—O9 ^{iv}	1.966 (5)
3.2916 (11)	Mo3—O7	2.047 (6)
3.6099 (7)	Mo3—O9	2.160 (5)
3.6099 (7)	Mo3—O9 ⁱⁱⁱ	2.187 (5)
2.422 (5)	Mo3—Mo3 ^{vi}	2.503 (4)
2.422 (5)	Mo3—Mo3 ^{iv}	2.8237 (2)
2.461 (4)	Mo3—Mo3 ^{xviii}	2.8237 (2)
2.461 (4)	Mo3—Mo3 ⁱⁱⁱ	3.145 (4)
2.465 (4)	Si—O10	1.620 (7)
2.465 (4)	Si—O6 ^{xix}	1.626 (7)
2.580 (7)	Si—O1	1.649 (4)
2.896 (8)	Si—O1 ^{xvii}	1.649 (4)
3.2310 (9)	Si—Nd2 ^{xx}	3.343 (2)
3.343 (2)	Si—Nd3 ^{xi}	3.4428 (14)
3.3645 (11)	Si—Nd3 ^{xxi}	3.4428 (14)
3.3645 (11)	Si—Nd2 ⁱⁱⁱ	3.4590 (14)
2.368 (7)	Si—Nd2 ^{vi}	3.4590 (14)
2.476 (4)	O1—Nd2 ^{vi}	2.461 (4)
2.476 (4)	O1—Nd3 ^{xi}	2.760 (5)
2.503 (4)	O2—Mo3 ⁱⁱⁱ	1.925 (6)
	2.321 (4) 2.321 (4) 2.321 (4) 2.444 (6) 2.520 (5) 2.520 (5) 2.524 (4) 2.524 (4) 2.651 (7) 3.2916 (11) 3.2916 (11) 3.6099 (7) 2.422 (5) 2.422 (5) 2.422 (5) 2.422 (5) 2.461 (4) 2.461 (4) 2.465 (4) 2.465 (4) 2.580 (7) 2.896 (8) 3.2310 (9) 3.343 (2) 3.3645 (11) 2.368 (7) 2.476 (4) 2.476 (4) 2.503 (4)	2.321 (4)Mo2-O22.321 (4)Mo2-O82.444 (6)Mo2-O12.520 (5)Mo2-Mo2 ^v 2.520 (5)Mo2-Mo2 ^{xvii} 2.524 (4)Mo3-Mo3 ^v 2.524 (4)Mo3-O2 ⁱⁱⁱ 2.524 (4)Mo3-O9 ^v 3.2916 (11)Mo3-O9 ^{iv} 3.2916 (11)Mo3-O9 ⁱⁱⁱ 2.422 (5)Mo3-Mo3 ^{vi} 2.422 (5)Mo3-Mo3 ^{vi} 2.461 (4)Mo3-Mo3 ^{ivi} 2.465 (4)Si-O1 ⁱⁱⁱ 2.465 (4)Si-O6 ^{xix} 2.580 (7)Si-Md2 ^{xx} 3.3645 (11)Si-Md2 ^{xx} 3.3645 (11)Si-Md2 ^{xii} 3.3645 (11)Si-Md2 ^{vii} 2.368 (7)Si-Md2 ^{vii} 2.363 (4)O2-Mo3 ⁱⁱⁱ

Nd3—O4 ^{ix}	2.503 (4)	O2—Mo3 ^{xviii}	1.925 (6)
Nd3—O8 ^{xi}	2.544 (6)	O2—Mo2 ^{xvii}	2.072 (4)
Nd3—O1 ^{xii}	2.760 (5)	O3—Mo2 ^{xvii}	1.988 (4)
Nd3—O1 ^{xi}	2.760 (5)	O3—Nd1 ^{xix}	2.444 (6)
Nd3—O6 ^x	2.8617 (13)	O4—Nd1 ^{xix}	2.321 (4)
Nd3—O6 ^{xiii}	2.8617 (13)	O4—Nd2 ^{xiv}	2.465 (4)
Nd3—Mo1 ^x	3.3280 (5)	O4—Nd3 ^{xvi}	2.503 (4)
Nd3—Mo1 ^{xiii}	3.3280 (5)	O5—Nd3 ^{xvi}	2.476 (4)
Mo1—O4 ^v	1.944 (5)	O6—Si ⁱⁱ	1.626 (7)
Mo1—O4	1.944 (5)	O6—Nd2 ^{xiv}	2.580 (7)
Mo1—O5	2.030 (4)	O6—Nd3 ^{xvi}	2.8617 (13)
Mo1—O5 ^v	2.030 (4)	O6—Nd3 ^{xv}	2.8617 (13)
Mo1—O8	2.055 (6)	O7—Mo2 ^v	2.029 (5)
Mo1—O6	2.122 (6)	O7—Mo3 ^v	2.047 (6)
Mo1—Mo2	2.5351 (8)	O8—Mo2 ^v	2.084 (5)
Mo1—Mo2 ^v	2.5351 (8)	O8—Nd3 ^{xi}	2.544 (6)
Mo1—Nd2 ^{xiv}	3.2310 (9)	O9—Mo3 ^v	1.941 (5)
Mo1—Nd3 ^{xv}	3.3280 (5)	O9—Mo3 ^{xviii}	1.966 (5)
Mo1—Nd3 ^{xvi}	3.3280 (5)	O9—Mo3 ⁱⁱⁱ	2.187 (5)
Mo2—O3	1.988 (4)	O9—Nd2 ^{vi}	2.422 (5)
Mo2—O5	2.023 (4)	O9—Nd1 ⁱⁱⁱ	2.520 (5)
Mo2—O7	2.029 (5)	O10—Nd2 ^{xx}	2.896 (8)
O4 ⁱ —Nd1—O4 ⁱⁱ	73.0 (2)	O5—Mo2—Mo2 ^v	92.56 (12)
O4 ⁱ —Nd1—O3 ⁱⁱ	73.68 (16)	O7—Mo2—Mo2 ^v	51.08 (11)
O4 ⁱⁱ —Nd1—O3 ⁱⁱ	73.68 (16)	O2—Mo2—Mo2 ^v	137.73 (13)
O4 ⁱ —Nd1—O9 ⁱⁱⁱ	107.18 (16)	O8—Mo2—Mo2 ^v	52.29 (10)
O4 ⁱⁱ —Nd1—O9 ⁱⁱⁱ	68.00 (16)	O1—Mo2—Mo2 ^v	93.21 (12)
O3 ⁱⁱ —Nd1—O9 ⁱⁱⁱ	139.08 (13)	Mo1—Mo2—Mo2 ^v	59.808 (13)
O4 ⁱ —Nd1—O9 ^{iv}	68.00 (16)	O3—Mo2—Mo2 ^{xvii}	39.53 (13)
O4 ⁱⁱ —Nd1—O9 ^{iv}	107.18 (16)	O5—Mo2—Mo2 ^{xvii}	87.44 (12)
O3 ⁱⁱ —Nd1—O9 ^{iv}	139.08 (13)	O7—Mo2—Mo2 ^{xvii}	128.92 (11)
O9 ⁱⁱⁱ —Nd1—O9 ^{iv}	68.6 (2)	O2—Mo2—Mo2 ^{xvii}	42.27 (13)
O4 ⁱ —Nd1—O5 ^v	106.48 (15)	O8—Mo2—Mo2 ^{xvii}	127.71 (10)
O4 ⁱⁱ —Nd1—O5 ^v	157.96 (15)	O1—Mo2—Mo2 ^{xvii}	86.79 (12)
O3 ⁱⁱ —Nd1—O5 ^v	84.93 (15)	Mo1—Mo2—Mo2 ^{xvii}	120.192 (13)
O9 ⁱⁱⁱ —Nd1—O5 ^v	130.62 (15)	Mo2 ^v —Mo2—Mo2 ^{xvii}	180.00 (6)
09 ^{iv} —Nd1—O5 ^v	92.40 (14)	O3—Mo2—Nd1	133.87 (17)
O4 ⁱ —Nd1—O5	157.96 (15)	O5—Mo2—Nd1	42.60 (12)
O4 ⁱⁱ —Nd1—O5	106.48 (14)	O7—Mo2—Nd1	46.31 (19)
O3 ⁱⁱ —Nd1—O5	84.93 (15)	O2—Mo2—Nd1	82.68 (16)

O9 ⁱⁱⁱ —Nd1—O5	92.40 (14)	O8—Mo2—Nd1	110.98 (14)
O9 ^{iv} —Nd1—O5	130.62 (15)	O1—Mo2—Nd1	134.87 (12)
O5 ^v —Nd1—O5	65.47 (19)	Mo1—Mo2—Nd1	69.77 (2)
O4 ⁱ —Nd1—O7	131.17 (14)	Mo2 ^v —Mo2—Nd1	69.319 (8)
O4 ⁱⁱ —Nd1—O7	131.17 (14)	Mo2 ^{xvii} —Mo2—Nd1	110.681 (8)
O3 ⁱⁱ —Nd1—O7	145.5 (2)	Mo3 ^v —Mo3—O2 ⁱⁱⁱ	85.19 (7)
O9 ⁱⁱⁱ —Nd1—O7	64.33 (15)	Mo3 ^v —Mo3—O9 ^v	129.21 (15)
O9 ^{iv} —Nd1—O7	64.33 (15)	O2 ⁱⁱⁱ —Mo3—O9 ^v	97.3 (2)
O5 ^v —Nd1—O7	66.35 (14)	Mo3 ^v —Mo3—O9 ^{iv}	129.78 (15)
O5—Nd1—O7	66.35 (14)	O2 ⁱⁱⁱ —Mo3—O9 ^{iv}	97.6 (2)
O9 ^{iv} —Nd2—O9 ^{vi}	70.0 (2)	O9 ^v —Mo3—O9 ^{iv}	100.3 (2)
O9 ^{iv} —Nd2—O1 ^{iv}	79.63 (15)	Mo3 ^v —Mo3—O7	85.48 (6)
O9 ^{vi} —Nd2—O1 ^{iv}	118.00 (15)	O2 ⁱⁱⁱ —Mo3—O7	170.39 (14)
O9 ^{iv} —Nd2—O1 ^{vi}	118.00 (15)	O9 ^v —Mo3—O7	90.4 (2)
O9 ^{vi} —Nd2—O1 ^{vi}	79.63 (15)	O9 ^{iv} —Mo3—O7	86.7 (2)
O1 ^{iv} —Nd2—O1 ^{vi}	69.0 (2)	Mo3 ^v —Mo3—O9	44.14 (14)
O9 ^{iv} —Nd2—O4 ^{vii}	106.24 (15)	O2 ⁱⁱⁱ —Mo3—O9	90.35 (19)
O9 ^{vi} —Nd2—O4 ^{vii}	67.40 (15)	O9 ^v —Mo3—O9	85.1 (3)
O1 ^{iv} —Nd2—O4 ^{vii}	173.48 (15)	O9 ^{iv} —Mo3—O9	169.71 (13)
O1 ^{vi} —Nd2—O4 ^{vii}	109.73 (15)	O7—Mo3—O9	84.51 (19)
O9 ^{iv} —Nd2—O4 ⁱ	67.40 (15)	Mo3 ^v —Mo3—O9 ⁱⁱⁱ	43.71 (13)
O9 ^{vi} —Nd2—O4 ⁱ	106.24 (15)	O2 ⁱⁱⁱ —Mo3—O9 ⁱⁱⁱ	90.55 (19)
O1 ^{iv} —Nd2—O4 ⁱ	109.73 (15)	O9 ^v —Mo3—O9 ⁱⁱⁱ	169.09 (14)
O1 ^{vi} —Nd2—O4 ⁱ	173.48 (15)	O9 ^{iv} —Mo3—O9 ⁱⁱⁱ	86.1 (3)
O4 ^{vii} —Nd2—O4 ⁱ	70.8 (2)	O7—Mo3—O9 ⁱⁱⁱ	81.12 (18)
O9 ^{iv} —Nd2—O6 ^{vii}	127.30 (15)	O9—Mo3—O9 ⁱⁱⁱ	87.3 (2)
O9 ^{vi} —Nd2—O6 ^{vii}	127.30 (15)	Mo3 ^v —Mo3—Mo3 ^{vi}	173.16 (4)
O1 ^{iv} —Nd2—O6 ^{vii}	114.28 (15)	O2 ⁱⁱⁱ —Mo3—Mo3 ^{vi}	101.65 (9)
O1 ^{vi} —Nd2—O6 ^{vii}	114.28 (15)	O9 ^v —Mo3—Mo3 ^{vi}	50.60 (15)
O4 ^{vii} —Nd2—O6 ^{vii}	60.01 (15)	O9 ^{iv} —Mo3—Mo3 ^{vi}	49.73 (15)
O4 ⁱ —Nd2—O6 ^{vii}	60.01 (15)	O7—Mo3—Mo3 ^{vi}	87.69 (6)
O9 ^{iv} —Nd2—O10 ^{viii}	142.32 (12)	O9—Mo3—Mo3 ^{vi}	134.93 (14)
O9 ^{vi} —Nd2—O10 ^{viii}	142.32 (12)	O9 ⁱⁱⁱ —Mo3—Mo3 ^{vi}	135.05 (14)
O1 ^{iv} —Nd2—O10 ^{viii}	67.74 (15)	Mo3 ^v —Mo3—Mo3 ^{iv}	173.94 (4)
O1 ^{vi} —Nd2—O10 ^{viiii}	67.74 (15)	O2 ⁱⁱⁱ —Mo3—Mo3 ^{iv}	100.87 (8)
O4 ^{vii} —Nd2—O10 ^{viii}	105.78 (15)	O9 ^v —Mo3—Mo3 ^{iv}	50.59 (15)
O4 ⁱ —Nd2—O10 ^{viii}	105.78 (15)	O9 ^{iv} —Mo3—Mo3 ^{iv}	49.75 (15)
O6 ^{vii} —Nd2—O10 ^{viii}	57.3 (2)	O7—Mo3—Mo3 ^{iv}	88.47 (7)
O10—Nd3—O5 ^{ix}	140.12 (12)	O9—Mo3—Mo3 ^{iv}	135.08 (14)
O10—Nd3—O5 ^x	140.12 (12)	O9 ⁱⁱⁱ —Mo3—Mo3 ^{iv}	135.23 (14)
$O5^{ix}$ —Nd3— $O5^{x}$	71.3 (2)	Mo3 ^{vi} —Mo3—Mo3 ^{iv}	0.780 (13)

O10—Nd3—O4 ^x	78.21 (18)	Mo3 ^v —Mo3—Mo3 ^{xviii}	6.06 (4)
O5 ^{ix} —Nd3—O4 ^x	105.19 (14)	O2 ⁱⁱⁱ —Mo3—Mo3 ^{xviii}	91.24 (7)
$O5^{x}$ —Nd3— $O4^{x}$	67.62 (14)	O9 ^v —Mo3—Mo3 ^{xviii}	128.49 (16)
O10—Nd3—O4 ^{ix}	78.21 (18)	O9 ^{iv} —Mo3—Mo3 ^{xviii}	128.78 (15)
O5 ^{ix} —Nd3—O4 ^{ix}	67.62 (14)	O7—Mo3—Mo3 ^{xviii}	79.42 (7)
O5 ^x —Nd3—O4 ^{ix}	105.19 (14)	O9—Mo3—Mo3 ^{xviii}	44.01 (13)
O4 ^x —Nd3—O4 ^{ix}	66.9 (2)	O9 ⁱⁱⁱ —Mo3—Mo3 ^{xviii}	43.31 (13)
O10—Nd3—O8 ^{xi}	129.1 (2)	Mo3 ^{vi} —Mo3—Mo3 ^{xviii}	167.10 (8)
O5 ^{ix} —Nd3—O8 ^{xi}	73.97 (14)	Mo3 ^{iv} —Mo3—Mo3 ^{xviii}	167.88 (7)
O5 ^x —Nd3—O8 ^{xi}	73.97 (14)	Mo3 ^v —Mo3—Mo3 ⁱⁱⁱ	5.44 (3)
O4 ^x —Nd3—O8 ^{xi}	139.17 (13)	O2 ⁱⁱⁱ —Mo3—Mo3 ⁱⁱⁱ	90.62 (8)
O4 ^{ix} —Nd3—O8 ^{xi}	139.17 (13)	O9 ^v —Mo3—Mo3 ⁱⁱⁱ	128.59 (15)
O10—Nd3—O1 ^{xii}	71.33 (18)	O9 ^{iv} —Mo3—Mo3 ⁱⁱⁱ	128.91 (15)
O5 ^{ix} —Nd3—O1 ^{xii}	99.53 (13)	O7—Mo3—Mo3 ⁱⁱⁱ	80.04 (6)
O5 ^x —Nd3—O1 ^{xii}	138.96 (13)	O9—Mo3—Mo3 ⁱⁱⁱ	43.99 (13)
O4 ^x —Nd3—O1 ^{xii}	149.47 (14)	O9 ⁱⁱⁱ —Mo3—Mo3 ⁱⁱⁱ	43.32 (13)
O4 ^{ix} —Nd3—O1 ^{xii}	107.72 (13)	Mo3 ^{vi} —Mo3—Mo3 ⁱⁱⁱ	167.73 (7)
O8 ^{xi} —Nd3—O1 ^{xii}	65.13 (14)	Mo3 ^{iv} —Mo3—Mo3 ⁱⁱⁱ	168.51 (7)
O10—Nd3—O1 ^{xi}	71.33 (18)	Mo3 ^{xviii} —Mo3—Mo3 ⁱⁱⁱ	0.621 (8)
O5 ^{ix} —Nd3—O1 ^{xi}	138.96 (13)	O10—Si—O6 ^{xix}	108.8 (4)
O5 ^x —Nd3—O1 ^{xi}	99.53 (13)	O10—Si—O1	109.7 (2)
O4 ^x —Nd3—O1 ^{xi}	107.72 (13)	O6 ^{xix} —Si—O1	105.0 (2)
O4 ^{ix} —Nd3—O1 ^{xi}	149.47 (14)	O10—Si—O1 ^{xvii}	109.7 (2)
O8 ^{xi} —Nd3—O1 ^{xi}	65.13 (14)	O6 ^{xix} —Si—O1 ^{xvii}	105.0 (2)
O1 ^{xii} —Nd3—O1 ^{xi}	60.67 (17)	O1—Si—O1 ^{xvii}	118.0 (3)
O10—Nd3—O6 ^x	78.94 (13)	Si—O1—Mo2	121.3 (2)
$O5^{ix}$ —Nd3— $O6^{x}$	136.43 (16)	Si—O1—Nd2 ^{vi}	113.1 (2)
$O5^{x}$ —Nd3— $O6^{x}$	65.21 (16)	Mo2—O1—Nd2 ^{vi}	116.82 (18)
O4 ^x —Nd3—O6 ^x	55.67 (17)	Si—O1—Nd3 ^{xi}	99.6 (2)
O4 ^{ix} —Nd3—O6 ^x	121.22 (17)	Mo2—O1—Nd3 ^{xi}	100.03 (16)
O8 ^{xi} —Nd3—O6 ^x	96.04 (14)	Nd2 ^{vi} —O1—Nd3 ^{xi}	100.11 (15)
$O1^{xii}$ —Nd3— $O6^{x}$	114.70 (16)	Mo3 ⁱⁱⁱ —O2—Mo2 ^{xvii}	127.12 (13)
$O1^{xi}$ —Nd3— $O6^{x}$	55.02 (16)	Mo3 ^{xviii} —O2—Mo2 ^{xvii}	136.69 (16)
O10—Nd3—O6 ^{xiii}	78.94 (13)	Mo3 ⁱⁱⁱ —O2—Mo2	136.69 (16)
O5 ^{ix} —Nd3—O6 ^{xiii}	65.21 (16)	Mo3 ^{xviii} —O2—Mo2	127.12 (13)
O5 ^x —Nd3—O6 ^{xiii}	136.43 (16)	Mo2 ^{xvii} —O2—Mo2	95.5 (3)
O4 ^x —Nd3—O6 ^{xiii}	121.22 (17)	Mo2—O3—Mo2 ^{xvii}	100.9 (3)
O4 ^{ix} —Nd3—O6 ^{xiii}	55.67 (17)	Mo2—O3—Nd1 ^{xix}	127.47 (15)
O8 ^{xi} —Nd3—O6 ^{xiii}	96.04 (14)	Mo2 ^{xvii} —O3—Nd1 ^{xix}	127.47 (15)
O1 ^{xii} —Nd3—O6 ^{xiii}	55.02 (16)	Mo1—O4—Nd1 ^{xix}	129.6 (2)
O1 ^{xi} —Nd3—O6 ^{xiii}	114.70 (16)	Mo1—O4—Nd2 ^{xiv}	93.50 (17)

O6 ^x —Nd3—O6 ^{xiii}	157.8 (3)	Nd1 ^{xix} —O4—Nd2 ^{xiv}	115.01 (18)
O4 ^v —Mo1—O4	94.5 (3)	Mo1—O4—Nd3 ^{xvi}	96.08 (17)
O4 ^v —Mo1—O5	163.60 (18)	Nd1 ^{xix} —O4—Nd3 ^{xvi}	109.39 (17)
O4—Mo1—O5	88.37 (18)	Nd2 ^{xiv} —O4—Nd3 ^{xvi}	111.05 (17)
O4 ^v —Mo1—O5 ^v	88.37 (18)	Mo2—O5—Mo1	77.44 (15)
O4—Mo1—O5 ^v	163.60 (18)	Mo2—O5—Nd3 ^{xvi}	126.38 (19)
O5—Mo1—O5 ^v	84.5 (2)	Mo1—O5—Nd3 ^{xvi}	94.71 (16)
O4 ^v —Mo1—O8	92.31 (17)	Mo2—O5—Nd1	104.56 (17)
O4—Mo1—O8	92.31 (17)	Mo1—O5—Nd1	104.90 (17)
O5—Mo1—O8	103.72 (17)	Nd3 ^{xvi} —O5—Nd1	128.36 (17)
O5 ^v —Mo1—O8	103.72 (17)	Si ⁱⁱ —O6—Mo1	170.9 (4)
O4 ^v —Mo1—O6	76.65 (18)	Si ⁱⁱ —O6—Nd2 ^{xiv}	102.9 (3)
O4—Mo1—O6	76.65 (18)	Mo1—O6—Nd2 ^{xiv}	86.2 (2)
O5—Mo1—O6	88.36 (18)	Si ⁱⁱ —O6—Nd3 ^{xvi}	96.28 (14)
O5 ^v —Mo1—O6	88.36 (18)	Mo1—O6—Nd3 ^{xvi}	82.35 (13)
O8—Mo1—O6	163.5 (3)	Nd2 ^{xiv} —O6—Nd3 ^{xvi}	97.50 (14)
O4 ^v —Mo1—Mo2	144.28 (13)	Si ⁱⁱ —O6—Nd3 ^{xv}	96.28 (14)
O4—Mo1—Mo2	94.20 (13)	Mo1—O6—Nd3 ^{xv}	82.35 (13)
O5—Mo1—Mo2	51.15 (12)	Nd2 ^{xiv} —O6—Nd3 ^{xv}	97.50 (14)
O5 ^v —Mo1—Mo2	92.81 (12)	Nd3 ^{xvi} —O6—Nd3 ^{xv}	157.8 (3)
O8—Mo1—Mo2	52.76 (13)	Mo2 ^v —O7—Mo2	77.8 (2)
O6—Mo1—Mo2	139.06 (12)	Mo2 ^v —O7—Mo3	135.39 (13)
O4 ^v —Mo1—Mo2 ^v	94.20 (13)	Mo2—O7—Mo3	144.19 (16)
O4—Mo1—Mo2 ^v	144.28 (13)	Mo2 ^v —O7—Mo3 ^v	144.19 (16)
O5—Mo1—Mo2 ^v	92.81 (12)	Mo2—O7—Mo3 ^v	135.39 (13)
O5 ^v —Mo1—Mo2 ^v	51.15 (12)	Mo2 ^v —O7—Nd1	100.1 (2)
O8—Mo1—Mo2 ^v	52.76 (13)	Mo2—O7—Nd1	100.1 (2)
O6—Mo1—Mo2 ^v	139.06 (12)	Mo3—O7—Nd1	88.0 (2)
Mo2—Mo1—Mo2 ^v	60.38 (3)	Mo3 ^v —O7—Nd1	88.0 (2)
O3—Mo2—O5	93.4 (2)	Mo1—O8—Mo2	75.52 (19)
O3—Mo2—O7	167.96 (18)	Mo1—O8—Mo2 ^v	75.52 (19)
O5—Mo2—O7	88.8 (2)	Mo2—O8—Mo2 ^v	75.4 (2)
O3—Mo2—O2	81.62 (18)	Mo1—O8—Nd3 ^{xi}	174.8 (3)
O5—Mo2—O2	87.0 (2)	Mo2—O8—Nd3 ^{xi}	108.5 (2)
O7—Mo2—O2	86.67 (17)	Mo2 ^v —O8—Nd3 ^{xi}	108.5 (2)
O3—Mo2—O8	88.33 (17)	Mo3 ^v —O9—Mo3 ^{xviii}	79.7 (2)
O5—Mo2—O8	102.9 (2)	Mo3 ^{xviii} —O9—Mo3	86.24 (19)
O7—Mo2—O8	102.73 (16)	Mo3 ^v —O9—Mo3 ⁱⁱⁱ	86.11 (19)
O2—Mo2—O8	166.3 (2)	Mo3 ^v —O9—Nd2 ^{vi}	100.32 (19)
O3—Mo2—O1	86.1 (2)	Mo3 ^{xviii} —O9—Nd2 ^{vi}	146.0 (2)
O5—Mo2—O1	171.44 (17)	Mo3—O9—Nd2 ^{vi}	94.31 (17)

O7—Mo2—O1	89.9 (2)	Mo3 ⁱⁱⁱ —O9—Nd2 ^{vi}	146.1 (2)
O2—Mo2—O1	84.5 (2)	Mo3 ^v —O9—Nd1 ⁱⁱⁱ	132.9 (2)
O8—Mo2—O1	85.6 (2)	Mo3 ^{xviii} —O9—Nd1 ⁱⁱⁱ	93.60 (18)
O3—Mo2—Mo1	95.04 (16)	Mo3—O9—Nd1 ⁱⁱⁱ	134.1 (2)
O5—Mo2—Mo1	51.41 (12)	Mo3 ⁱⁱⁱ —O9—Nd1 ⁱⁱⁱ	88.46 (16)
O7—Mo2—Mo1	95.57 (15)	Nd2 ^{vi} —O9—Nd1 ⁱⁱⁱ	109.58 (19)
O2—Mo2—Mo1	138.13 (18)	Si—O10—Nd3	170.3 (5)
O8—Mo2—Mo1	51.72 (17)	Si—O10—Nd2 ^{xx}	91.0 (3)
O1—Mo2—Mo1	137.15 (12)	Nd3—O10—Nd2 ^{xx}	98.7 (2)
O3—Mo2—Mo2 ^v	140.47 (13)		

Symmetry codes: (i) -x+1/2, y+1/2, z+1/2; (ii) -x+1/2, -y+1, z+1/2; (iii) -x, -y+1, -z+1; (iv) -x, y+1/2, -z+1; (v) x, -y+3/2, z; (vi) -x, -y+2, -z+1; (vii) -x+1/2, -y+2, z+1/2; (viii) x, y+1, z+1; (ix) x-1/2, -y+1/2, -z+1/2; (x) x-1/2, y, -z+1/2; (xi) -x, -y+1, -z; (xiii) -x, y-1/2, -z; (xiii) x-1/2, y-1, -z+1/2; (xiv) -x+1/2, -y+2, z-1/2; (xv) x+1/2, y+1, -z+1/2; (xvi) x+1/2, y, -z+1/2; (xvii) x, -y+1/2, z; (xviii) -x, y-1/2, -z+1; (xix) -x+1/2, -y+1, z-1/2; (xv) x+1/2, y+1, -z+1/2; (xvi) x+1/2, y, -z+1/2; (xvii) x, -y+1/2, z; (xviii) -x, y-1/2, -z+1; (xix) -x+1/2, -y+1, z-1/2; (xv) x, y-1, -z-1; (xvi) -x, -y, -z.

Fig. 2